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ADVANCED NUMERICAL COMPUTATION OF 
TWO-DIMENSIONAL TIME-DEPENDENT FREE 

CONVECTION IN CAVITIES 

K. KijBLBECK,* G. P. MERKER~ and J. STRAWI* 
(Reeeiwd 21 May 1979) 

&&act - A two-dimensional time-dependent numerical computation method has been developed to 
determine laminar free convection in closed cavities and forced convection in ducts and open cavities. The 
transport equations for energy and vorticity are solved with the aid of the ADI-method, but the. more recently 
established method of cyclic reduction is applied to the Poisson equation. The resulting implicit method 
remains stable up to a Rayleigh number of 10 *’ Due to the acceptable large time step, the method is . 
particularly qualified for transient problems with extremely slow changing properties. A transformation 
relation, q(x, E), is proposed for sufficiently accurate dete~ination of thermal and hydr~~a~c boundary 
layers near the vertical side walls in cavities. The benefit ofthe present numerical computation technique has 
been demonstrated by solving two problems of free convection in a rectangular cavity, namely with 

differentially but uniformly heated side walls and with only one side wall non-uniformly heated. 
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1. INTRODUCTION 

FOR MANY heat transfer problems, the governing 
differential equations are far too complicated to be 
solved by analytical techniques. Therefore, a detailed 
and sufficiently accurate description of the resulting 
temperature and velocity patterns can only be 
achieved by numerical computation. Well known 
examples are the heat waste of hot fluid through 
internal heat transfer processes in thermal energy 
storage systems (Schtill [l], Straub et al. [Z]), tem- 
perature equalization processes in air-conditioning 
systems (Moog [3]) and seasonal temperature distri- 
butions in lakes due to eddy and thermal mixing 
processes (Blol3 [4]). 

Especially in the field of engineering, it is common 
practice to describe complicated physical problems 
with simple and often crude models, with the advan- 
tages that an analytical or numerical solution can be 
easily derived. As these models are based either on 
some drastic simplifications of the full governing 
equations or on simple overall energy balances with 
the unknown transfer processes approximated by 
semi-empirical correlations the results are often lim- 
ited and of modest value. 

On the other hand, analytical solutions of the full 
nonlinear basic equations have become known for 
only a very few problems [5]. In recent years the 
method of matched asymptotic expansions has been 
developed (Van Dyke [6], Nayfeh [7]), and success- 
fully applied to free convection problems in shallow 
cavities (Cormack et al. [8]). 

Experimental investigations are usually restricted to 
the study of laboratory models whereby the similarity 
conditions are often hard to meet. 

Therefore, for most advanced problems the only 
acceptable solution method is a numerical com- 
putation technique. The literature on numerical com- 
putation methods has been rapidly expanding in 
recent years but very few of these methods are of 
moderate value as the convergence and stability 
criteria are not sufEciently satisfied in fluid problems 
with high Rayleigh numbers of lo6 and more, or if the 
convergence and stability criteria are fully satisfied, the 
time step and/or the mesh size becomes so small that 
the needed computation time is far beyond any 
reasonable limit. Hence, there is still a strong demand 
for fast numerical computation techniques which 
avoid these difficulties. 

For instance, steady state numerical methods for 
recirculating flows which have appeared in the litera- 
ture in recent years are usually restricted to low 
Rayleigh number flows and become instable for Ra 
> lo6 (Rubel and Landis [9], Fromm [lo, 111, De 
Vahl Davis [12], McGregor and Emery [13]). The 
transient method by Wilkes [ 141 for elliptical differen- 
tial equations is also restricted to Ra < 10’. 

A review of various numerical techniques has been 
given by Torrance [lS]. He also points to the problem 
of artificial viscosity which leads to non-energy and/or 

continuity conserving formulas and, therefore, to 
erroneous results. The more recently developed meth- 
ods are reviewed in the excellent book by Roache 

WI* 
In this paper, a fast numerical computation method 

for transient two-dimensional problems of free and 
forced convection is described. 

2. MATHEMATICAL FORMULATION 

Neglecting the dissipation and pressure term in the 
energy equation one obtains, subject to the usual 
Boussinesq approximation, the governing equation for 
an incompressible fluid with constant properties (ex- 
cept density) (see e.g. [17, 181) 

vu = 0, (I) 

(2) 

dT 
- = aV’T, 
dt 

where the equation of state is reduced to a simple 
density-temperature relation 

P 1 

& = 1 + /3(T- To) ’ 

For two-dimensional problems, it is convenient to 
define a stream function JI which satisfies the equation 
of continuity identically 

ati a* 
u=- 

ay ’ 
vr --. 

ax (5) 

Elimination of the pressure from the equation of 
motion and introducing the vorticity o gives 

au au o=----_. 
ax ay 

The equations of motion are reduced to the transport 
equation of vorticity 

Before proceeding further, it is convenient to bring 
these equations into dimensionless form. With 

(x*,Y*) = (X.YUL 

v, v*) = (u, VYUO, 
P * = PIPo& 

5 = a*t/L2, 

f~ = (T- T,)MT, - T,), 

one obtains 

w = - V2$, (8) 

(9) 

d0 
z = vze, (10) 
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where the asterisks have been omitted to simplify 
matters. 

As there is no characteristic velocity in pure free 
convection problems we assume u0 = a/L. Hence the 
Reynolds number Re = uOL/v becomes identical with 
the Prandtl number, Pr = a/v and the Pellet number, 
Pe = u,L/a, becomes equal to unity. 

Equations (5) and (8)-( 10) are the governing dilfer- 
ential equations for free convection problems. To solve 
this set of equations is not a simple matter as the 
vorticity equation is coupled to the elliptic Poisson 
equation through the nonlinear convection terms. 

For a numerical solution procedure these equations 
are usually directly transformed into finite difference 
equations with the aid of a proper differencing scheme. 
But to account for the vertical boundary layers near 
the side walls one would have to introduce an ex- 
tremely dense grid which leads to a tremendous 
number of algebraic equations having to be solved. 
Generally, this situation can be improved either by 
mapping the flow area under consideration with a 
non-equidistant grid, i.e. small mesh size in the boun- 
dary region and larger grid distances in the core flow 
region or by introducing suitable transformation 
equations, p(x) and q(y), which accumulate the grid 
points in the boundary layer region. With a proper 
transformation equation, the second method allows 
arbitrary boundary layer decomposition and is, in our 
experience, simpler to deal with than non-equidistant 
mesh sizes. 

With arbitrary transformation relations p(x) and 
q(y) one obtains for the first derivative of a dummy 
variable I 

ar dI- &I dl- _=-._--.A 
ax ap ax ap n 

ar ar aq ar _=-.__r-.A 
ay a4 ay aq Y 

(11) 

and, from this, for the second derivatives 

a2r a2r -_.‘.p+!E.&, 
dx2- a$ aP 

(12) 

Substituting (1l)and (12)into (8)-(10) oneobtains the 
following set of transformed equations 

au 
-$+ A,uf-ff+ A,2 

ap aq 
=pr. A$!k+A2!2 

C w y a42 > 

+Pr* 

ae + Gr.Pr”A;-, 
ap 

ae de a28 a28 
dr+A,u-+Ay~~~=A~-+A;7 

aP aq aP2 as 

u=A!? t,=_A? 
Jaq’ =ap. (16) 

It should be noted that the non-transformed equations 
are easily re-established by setting 

A ==Ag= 1 and 8, = B, = 0. 

Therefore, the transformation relation can be simply 
switched off for problems where it is not needed. 

3. NUMERICAL PROCEDURE 

3.1. Energy and vorticity equation 
The energy and vorticity transport equations are of 

the same ‘elliptic type’. They pose a boundary value 
problem and can be treated with one of the integration 
techniques briefly outlined in this chapter. 

Well established explicit methods are the Euler- 
method (one-step), Heun-method (two-step) and 
Runge-Kutta-method (multi-step). To satisfy the 
strong stability criteria of these explicit methods ex- 
tremely small time steps are usually required which 
lead to considerable computation times. Hence, these 
methods are not suitable for slow changing transient 
processes. For instance, applying the Euler-method to 
the problem considered in Chapter 4.1 leads to a 
computation to real time rate of approximately 10: 1. 

Some success is gained by introducing semi- 
analytical methods. In two-dimensional transient prob- 
lems, the differential equations are separated into two 
of three independent variables. The resulting coupled 
ordinary differential equations are then solved with the 
procedure by Runge-Kutta or Stoer-Bulirsch 1191, 
respectively. These methods are very accurate but still 
time consuming due to the large number of coupled 
differential equations. 
3.1.1. The ADI-method. Probably, the best known and 
widely used implicit method is the Crank-Nicolson 
method. Contrary to the point-by-point solution tech- 
nique of the explicit methods, simple implicit methods 
use advance values in the spatial derivatives, thereby 
requiring the simultaneous solution of a large number 
of algebraic equations. Furthermore, application of 
implicit methods to two-dimensional problems, leads 
to a set of equations which can be solved by inversion 
of the resulting pentagonal matrix. 

Contrary to this, the ADI-method (alternating 
direction implicit method) by Peaceman and Rachford 
[20] splits the time step to obtain a multi-dimensional 
implicit method which requires only the inversion of a 
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tridiagonai matrix. This tridiagonal matrix can be 
solved with the Thomas algorithm [21] which is 
merely a special adaptation of the Gaussian elimina- 
tion procedure; see Richtmeyer and Morton [22]. 
Credit is given to the ADEmethod because relatively 
large time steps are permitted. Furthermore, it has a 
second order accuracy of O(At’, Ax’, Ay’) and its 
‘weak’ stability conditions are easy to satisfy. (For 
further details see Roache [16].) 

Equation (14) and (15) may be written in a com- 
bined form for a dummy variable as 

ar ar 
zf A;lA .-+A,.pdT 

6) 84 

and 

WW 

The second derivatives of the diffusion terms are 
approximated by centered space evaluation with an 
error of 0(Ax2), d2r a2r ar ar 

A;-+AA,2-++B,-++ - 
ap2 aq= ap 'a4 

+/I, (17) 
% A:(i) 

with a = 1 and /3 = 0 for the energy and a = Fr and 
/? = GrPrfA,&3,Vp for the vorticity equation. 

Splitting the. time step Ar leads to 

l-11+1/2 _ L-8 W + l/Z 
6rn 

At/2 
+ A#- 

dP 
+ A#--- 

ficl 

and 

p+l _ p+tit p+l/Z IS+1 

At/2 
+ A&‘+‘“- 

6P 

+ 4.+1225_ 

h 

= a A:6;;21i2 + A;% 

+ Bsy + ByF) + /I”+“‘, 
4 

(18b) 

where the time derivatives have been approximated by 
a simple Euler step. 

The nor&near convective terms cause the main 
difhculties in separation in order to achieve a stable 
numerical method. This can be overcome by using the 
second-upwind-differencing-method, Lilly [42]. One 
obtains 

* (ry,“:‘; - 2ry.;1!2 + r~~~!~)/Ap2, (20a) 

t A;(j) 

*r;j+* - 2R, + r;.,-1),‘4~. WW 

The first derivatives of the ‘diffusion terms’, a con- 
sequence of the transformation, are also approximated 
by centered space evaluation but not given here. 

The buoyancy term is again approximated by 
centered space evaluation but with temperatures at 
time level n and n + t, respectively. This procedure has 
a strong stabilizing effect on the overall numerical 
method. Hence, 

z A,(i)~(OY+I.j - @T-~.,)PAP. (21) 

Substituting these approximations into (Isa) and 
(lgb) and rearranging the equations one obtains 
finally for the x-component 

and for the y-component 

R..+ 1f2 *+1/z 

1.i . r:.;! I + S,j .rm+l 
1. j 

+ 7v+1/2 
1. J 

.p+l 
i.i+1 = U;e;1’2. (22b) 

These equations are valid for every nod fi, j), Given 
a line with N grid points one obtains for every linej a 
tridiagona1 matrix of size (N - 2) . (N - 2). The same 
is analogically true for every row i. A schematic 
diagram of the procedure is given in Fig. 1. Due to the 
favourable separation process with the 5 point basic 
grid no auxiliary points outside the boundaries are 
needed. 

3.1.2. Stab~fi&y criteria of the ADI-method. The time 
step Ar and the mesh sizes Ax and Ay have to be chosen 
in such a way that all coefficients of the finite difference 
equation are positive and that the principal diagonal is 
still dominant. Richtmyer and Morton [22] have 
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shown that these criteria are sufficient to achieve a 
stable numerical method. The first condition is satis- 
fied by introducing the second upwind diff~en~ng 
method [23]. In addition, this method has the advan- 
tage that the convection terms, which count for 
numerical instability, can be physically interpreted. 
Thereby, a physical quantity enters a control volume 
with the linear mean velocity of the flow in the 
direction of the flow. 

The second criteria requires that some norm of the 
matrix is less than unity, Schwarx [24]. The dominance 
of the principal diagonal is also ensured if the cell- 
Reynolds number is less than 2 (Thoman and Sxewc- 
zyk [25]). These last two conditions are identical, but 
result from different physical reasoning, Roache [i6]. 
The cell-Reynolds number may be obtained from the 
simplified equation 

ar 
ds + 4~ 

ar 2 PI- 
z = aA, 2 + @Bx 

ar a.fw) 
Say’ 

(23) 

Analogous to the procedure outlined above one 
obtains from (23) for the elements of the tridiagonal 
matrix 

ri* 1 :@-A, - a*Bx)-&-a*A$sL. 
Ax2 

ri:$ + 2a*A&, 

ri_ 1 :-(u.A.-a.B,)~-I.A:.~. 

The demand for positive coefficients gives 

(u.A, - a~B.)~& - a*Ai*& > 0 (25) 

and, hence, one obtains for the cell-Reynolds number 

FIG. 1. Schematic diagram of the numerical solution method. 
H.M.T. 23/Z+ 

u.A, - a-B, 
Rez= a,Az Ax < 2, (26) 

i 

which, for the nontransformed equations, becomes 

u.Ax 
Re, z - c 2. 

a 

One should keep in mind that u and Ax are 
dimensionless values. Furthermore, the all-Re~oIds 
number is equal to 4 for tw*dimensional problems 
(Roache [ 161). But due to the time splitting equations 
(22a) and (22b) are essentially one-dimensional which 
requires Re, c 2. 

If (26) is taken to fix the mesh size Ax the permissible 
time step AT follows then from the demand for a 
dominant principal diagonal. 

3.2. Poisson equation 
The Poisson equation must be sob& twice for each 

time step. The velocity components u and D are then 
derived from the definition of the stream function I&. 
This immediate ‘pull-off’ of the velocity components is 
of essential significance for the exact determination of 
transient processes. Other methods, as the evaluation 
0fu”+1/2 and ““+1/Z via extrapolation from u”, v” and 
tl”-i, d-i or the ‘drop back’ of the velocity com- 
ponents at a full time step have also been studied but 
are found to be much less efficient (Briiey [26], A& et 
al. [27]). 

Approximation of (14) through centered space 
evaluation yields 

I 
- %, = &W[Jl;+r., - 2@., + $L-,.J/&’ 

+ A;(j) * [JI; 1+ 1 - WC., + $7. ]- il/&2 

+ B,(i) * [IL!‘+ I., - JI;- 1. J/2& 

+ B,(j). WY. ,+ 1 - +Y. ,- JPAL\q. (27) 

This form is based on the well known 5 point grid [28] 
and has a truncation error of 0&x2). 

The Gauss-Seidel iteration method is properly the 
best known method to solve (27) (Zurmiihl[29]). This 
iteration process is usually truncated if the difference of 
the results of two following iterations steps is less than 
a certain limit 

l+z;l - tlril/ < fi. 

Extensions of the Gauss-Seidel method are the 
method by Southwell [30] and some relaxation meth- 
ods. Thereby, the iteration process is considerably 
accelerated if an optimum value of the relaxation 
parameter, 8 5 I is used (under or over relaxation). 
On the other hand, the iteration process is also 
precipitated by formulating the problem as a pseudo- 
transient one, i.e. adding an artificial time-dependent 
term a$/&*. The differential equation is then in- 
tegrated with respect to this artificial time until a 
steady state solution is achieved. This integration can 
be carried out using the already discussed Euler 
(explicit) or ADI-method (implicit). 
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Due to intensive research in recent years direct 
inversion methods are now coming into use. These 
methods are extremely accurate. They need con- 
siderably less computation time and are, compared to 
common ADI-methods, more than 20 times faster. A 
review of known direct inversion methods is given by 
Dorr [31] whereas Schumann [32] reviews fast elliptic 
solvers which have been developed very recently. 

Some of these methods are limited with respect to 
suitable boundary conditions and/or the number of 
grid points in both coordinate directions, but all of 
them invert the basic pentagonal matrix in an ex- 
tremely short time. 

It appears to us that a reasonable compromise 
between the necessary computation time, the optimal 
freedom with respect to boundary conditions and the 
suitable number of grid points is obtained with the 
method of cyclic reduction by Schumann and Sweet 
[33,34] which solves the general Poisson equation 

4x)$ + b(x) ax E + c(x) r + $ =f(x,y). (28) 

For instance, the subroutine POISSX inverts a 
matrix with 128 x 33 grid points in about 0.3 s. Due to 
the special form of (28) the original pentagonal matrix 
with unsymmetric side-diagonals is converted into a 
symmetric tridiagonal matrix. The elements of this 
tridiagonal matrix are again tridiagonal matrices 
whereas the side-diagonals are occupied with unit 
matrices. It is this reduction process which leads to the 
fast inversion of the original matrix. Further details 
may be found by Schumann [32]. 

3.3. A tran$ormation equation 
Using transformation equations p(x) and q(y) the x 

and y coordinate can be separately transformed. 
However, fast Poisson solvers are restricted to equa- 
tions of the same type as (28) and therefore allow 
transformation with respect to one of the coordinates 

42 96 0,6 0,8 40 
x - Coordinate - 

FIG. 2. The transformation relation q(x; E) for different values 
of the deformation parameter. 

only. Even though this is a limitation of the method, it 
can be easily met for many problems, especially 
boundary layer flows. 

For free convection in cavities we recommend the 
relation 

(29) 
Figure 2 shows a graph of this equation for various 
values of the deformation parameter F. where the 
optimum of E is a function of the ratio length to width 
of the cavity. The parameter S allows the linear 
transformation of shallow cavities with W/H >> 1 into 
square ones. 

4. APPLICATIONS 

The numerical procedure described in Chapter 3 has 
been tested by determining the solutions for some 
already known problems. For instance, the governing 
quations reduce to those describing one- and two- 
dimensional transient heat conduction problems by 
setting Gr = 0 and $ z 0. The deviation from known 
analytical solutions is less than 0.1% as test runs have 
indicated. Furthermore, the predicted thermo- and 
hydrodynamical entrance flow between parallel plates 
is accurate to within 1%. compared to the solution 
given by Schlichting [3S]. Finally, the calculated 
velocity and temperature profiles for free convection 
flow in vertical gaps deviates from the analytical 
~lution by Bird et at. [ 171 by less than 0.5 %. 

In addition, the steady state solution for the problem 
considered in Chapter 4.1 has been recalculated using 
the computation method by Gosman [37]. Both 
results are in agreement to at least 6 decimal places for 
Ra < 10”. No comparison was possible for higher 
Rayleigh numbers as the procedure by Gosman did 
not converge. 

We conclude from the results of these test runs that 
the numerical method described in this paper is highly 
accurate and especially suitable for free convection 
problems. 

4.1. Free convection in a square box with di~rent but 
uniform side wall temperatures 

We consider a closed square two-dimensional box 
which contains a Newtonian fluid, and is shown 
schematically in Fig. 3. The side walls are held at 
different but uniform temperatures T, and T,, with 
T < &. The top and bottom are insulated, and all 
surfaces are rigid non-r&p boundaries. The initial 
temperature is constant throughout the box and equal 
to &J = 0.5. At r = 0, the temperature of the left side- 
wall falls suddenly to 0, = 0 and that of the right side- 
wall rises to eb = 1. Both temperatures remain at this 
new level for ever. 

The appropriate governing equations for this prob- 
lem, subject to the usual Boussinesq approximation, 
are those given in the previous chapters. 

For non-slip boundaries it follows immediately 
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FIG. 3. Schematic diagram of example 1. 
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FIG. 4(a). Transient vorticity, stream-function and temperature patterns at timer = 2#,400,800 and 1400 s, 
for Pr = 0.733 and Gr = 2 x 104. 
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FIG. 4(b). Transient vorticity, stream-function and temperature patterns at time t = 2500, 5000, 10000 and 
2OOOOs, for Pr = 0.733 and Gr E 2 x 104. 

from (5) that $ = const. The vorticity at a non-slip 
boundary is obtained by a Taylor series out from the 
wall and is independent of the wall orientation [16], 

be accepted if a sufficiently large number of grid points 
is used (Gosman [37]). 

The calculations were carried out using 21 x 21 grid 
points. The Grashof number has been chosen equal to 
2 x lo4 and the time step equal to 2s. The predicted 
vorticity, stream-function and temperature patterns 
are shown in Figs. 4 and 5, restitively for different 
times and for two Prandtl numbers equal to 0.733 (air) 
and 6.983 (water). 

The steady state solution is approximately ap 
proached after 1 h for Pr = 6.983 and after 2 h for 
Pr = 0.733. As a result of the symmetrical temperature 
jump at r = 0 one observes at first two convection rolls 
which are growing into the core region with time and 
finally disappear into one roll. 

The core region is horizontally well mixed and 
vertically stably stratified for Pr = 6.983. Both the 
thermal and hydrodynamic boundary layers become 

0, = - 
w v+, - $,I wlv+, 

An* -+-7’ (30) 

Although the truncation error of (30) is O(An), the 
resulting numeric+! procedure is essentially more 
stable, as it would be with the boundary condition by 
Woods [36] 

which is accurate to O(An*). 
The adiabatic wall is not represented by the usually 

used reflection of grid points at the wall, but rather by 
setting 8, = 8,+ 1. Hence, the heat capacity of a layer 
with thickness of half a mesh size is neglected. This may 
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FIG. S(a). Transient vorticity, stream-function and temperature patterns at time t = ZOO, 4C!O, 800 and 1600 s, 
for Pr = 6.983 and Gr = 2 x lo*. 

thicker with decreasing Prandtl numbers and the 
temperature profile approaches the conduction sol- 
ution as Pr + 0 or Gr -+ 0. It is interesting to note the 
two maximas in the $-pattern at Pr = 6.983 which do 
not appear at Pr = 0.733. These maximas yield to a 
recycling Bow half way between top and bottom, and 
were already predicted by de Vahl Davis [ 121 and 
Cormack et al. [38] and experimentally verified by 
Elder [39] for W/H = 1 and by Merker et al. [40] for 
W/H = 7.5. Elder has estimated that this recycling 
flow starts at approximately Ra I lo5 which is in 
excellent agreement with the present results. 

Comparing the J/-patterns at different times shows 
that the stream function increases at first until reaching 
a maximum and decreases at larger times ; i.e. the effect 
of the local Grashof number on the flow pattern 
decreases with time due to mixing and internal tem- 
perature balancing. 

The convergence behavior of the numerical method 
is checked by runs with different time steps and mesh 

sixes. Ahering the time step results in minor changes of 
the transient patterns and has no detectable effect on 
the steady state solution. Figure 6 shows the absolute 
error as a function of mesh size (decomposition h). The 
errors obtained with a 21 x 21 grid are: A+/$ = 0.23, 
AW/W = 0.20 and A@/@ = 0.025. The reference point 
for these errors and the ‘exact’ solution can be 
estimated if numerical solutions with three different 
mesh sixes are known. These are shown below. 

Assuming that the steady state solutionsf,. , at each 
grid point (xi, yl) converge parabolically to the exact 
solution ft, with decreasing mesh sire, one has for 
three different mesh sixes where l//t fohows a geometri- 
cal series 

Grid 11x11 21x21 41x41 

l/h 10 20 40 
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FIG. S(b). Trtmsient vorticity, stream-function and temperature patterns at time t = 2500,5000, iOOC0 and 
2OOOOs, for Pr = 6.983 and Gr a 2 x lo*. 

h* = q*h,_,. (33) 

The difference of the two following solutions is 

d, =fio -f10 ==MO(qL - l), 
(34) 

d2 =&a -x20 =Jx,q'et - 1). 
Hence 

p+ (35) 

and, therefore, for the wanted exponent k 

with q = l/2, or 

Grid 19x19 31x31 51x51 

l/h 18 30 50 

with q = 315. 
Hence, by neglecting higher order terms 

fl0 =f* +fr % 

ho =f* +x eo9 

$40 =f* +h &I. 

(32) 
k = (In(d2) - WfdMn(q). 

The exact solution can now easify be calculated from 
equation (32). The mesh size or decomposition rates are related 
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FIG. 6. Absolute errors vs grid spacing. 

The average error over all grid points is shown in 
Fig. 6 for different decomposition rates h. It can be seen 
that the vorticity and stream function converge with 
exponent whereas the temperature field con- 
verges with k = 1.5. The vorticity and stream function 
show large errors at large mesh size steps whereas the 
temperature shows relatively small errors even at large 
mesh sixes. This is in agreement with the well known 
fact that the temperature field reacts weakly to changes 
in the flow field. Some transient numerical methods 
take advantage of this weak dependence and solve the 
temperature equation every nth time step only. 

Figure 6 also shows the results obtained with the 
transformation relation. Principally, the numerical 
error decreases with increasing deformation rate E. As 
there is practically no effect for E d 0.2 one visualizes 
substantially reduced errors for moderate values, i.e. 
E 9 0.5. Increasing E further concentrates the number 
of grid points in the boundary layer region. Since the 
total number of grid points is constant, only a few 
points remain in the core region. Hence, as the 
boundary layer region will be calculated more and 
more accurately, the core region suffers. Therefore, it is 
clear that there exists an optimal value for E which is 
approximately 0.8 in the present case. 

The numerical calculations have been performed on 
a CDC-Cyber 175. The necessary computation time as 
a function of the number of grid points is given in Fig. 
7. This figure shows that using the transformation 
relation increases the computation time by approx- 
imately 30%. In general, time increases linearly with 
the number of grid points. This favourable behavior 
(otherwise quatric or cubic increasing) is due to the 
ADI-method which is used to integrate the energy and 

u” 
z 42 

i 
.Z 
t 
= 0) 
i 
‘Z 
6 
$ 0,os 

x 
h 

P R V Convenlionol 

g qo2 
1 
/ 

0,Ol . 
I 

100 200 500 lwxl LaxI 

Number of grid points - 

FIG. 7. CPU-time, vs number of grid Points. 

vorticity equation. Furthermore, the computation 
time is approximately equally distributed between the 
three basic equations as test runs have shown. 

4.2. Free convection in a square box with one side wall 
nonuniformly heated and the other held adiabatic 

Again, we consider a closed square and two- 
dimensional box, but now, only one side wall is heated 
at its lower half and cooled at its upper with different 
but uniform temperatures ‘& and T,. On the left side 
wall, the top and bottom are again insulated and all 
surfaces are rigid non-slip boundaries. This arrange- 
ment can be treated as a crude model of a room heated 
by a radiator and cooled off by a window (closed !), and 
is shown schematically in Fig. 8. The initial tempera- 
ture is constant and equal to unity. 

During the first 500 s the temperature of the side wall 
is maintained uniformly at 6, = 0. At t = 500s the 
temperature of the lower half rises suddenly to 
8 v.l = 1 and remains there for all further times. 

Figure 9 shows the predicted vorticity, stream 
function and temperature patterns for different times 
and for the case where Ru = 5.6 x 10’. The upper line 
represents the patterns after 5OOs, which are self- 
evident and may therefore not be discussed further. 
After having changed the temperature at the lower 
half, one finally ends up with a periodic state; i.e. one 
obtains two convection rolls, one in the upper and one 
in the lower part of the box. These rollsgrow and decay 
periodically with time, as is shown in the second and 
third line of Fig. 9. The diagrams show approximately 
the maximum and minimum size of the rolls. A similar 
behavior has been observed by Igarashi [41] who 
studied free convection in a square box due to a line 
source at the bottom. We do not feel that this periodic 
state is a direct consequence of our limitation to a two- 
dimensional box. Taking three-dimensional effects 
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Adiabatic 

walls 

n 

I 9 

FIG. 8. Schematic diagram of example 2. 

function of the Rayleigh number. The calculated 
frequencies follow the parabolic relation very ciosely 

flfo = JRalRa, (37) 

The numerical calculations for this example have been 
carried out with a 21 x 21 grid but without utilization 
of the transformation relation. 

into account may alter the periodic state but does not 
let it disappear. One should notice that the vertical 
density stratification is unstable with a high density 
fluid above a low density fluid. Therefore, it is most 
likely that the observed periodic state results from the 
involved stability problem. 

Figure 10 shows the frequency of oscillations as a 

TIM IN SEC, 500.0 

CROSS SECTION TEIIPERATURE VORTICITY STREhfl FUNCTION 

.._ 
CROSS SECTION VORTICITY STREAI, FUNCTION TE”PERAT”RE 

CROSS SECTION TEnPE?\TURE 

FIG. 9. Transient vorticity, stream-function and temperature patterns at different times. 
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Raylctgh - number Ra - 

FIG. 10. Oscillation frequency vs Rayleigh number. 

5. CLOSING COMMENTS 

The numerical method described in this paper has 
some benefits compared to already known procedures. 
Through the adaptation of the ADI-method for the 
vorticity and energy equation and of the method of 
cyclic reduction for the Poisson equation, it has 
become possible to study extremely slow transient 
processes. Test runs have shown that the computation 
time necessary to simulate free convection in Closed 
containers of moderate size (volume 1 m3) over a time 
period of approximately 5 days is somewhat below 1 h. 
Furthermore, the method is applicable to Rayieigh 
numbers up to 10lz. This is essentially due to the use of 
the method of second upwind differencing. The 
method of fast cyclic reduction used to integrate the 
Poisson equation calculates the velocity components 
at every half time step. This procedure increases the 
accuracy of transient solutions considerably. The 
transformation relation previously discussed is ex- 
tremely useful in cavity problems with boundary layers 
at the vertical wails. Finally, the flow area has not 
necessarily been restricted to rectangular cavities. 
More general geometries can be treated by introducing 
well-chosen running statements for the dummy run- 
ning indices. 

However, it should be kept in mind that the present 
method is restricted to iaminar flow. Therefore, it 
should be carefully checked whether the considered 
flow is still iaminar or already turbulent as the 
Rayieigh number approaches higher values. If the 
temperature differences are small but the geometrical 
dimensions of the cavity are large the observed flow 
may be still iaminar even at high Rayieigh numbers. 
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CALCUL NUMERIQUE DE CONVECTION NATURELLE BIDIMENSIONNELLE 
ET VARIABLE DANS LE TEMPS, A L’INTERIEUR DE CAVITES 

R&me-On diveloppe une mtthode de calcul num&rique pour determiner la convection naturelle laminaire 
a deux dimensions et variable dans le temps pour des cavitls fen&es, et de la convection for&e dans ies tubes 
et les cavitb ouvertes. Les equations de transport de l%nergie et du tourbillon sont &oiues a I’aide de la 
m&ode ADI. mais la mtthode la plus recente de reduction cyclique est appliquCe a i’tquation de Poisson. La 
methode implicite rtsultante est stable jusqu’l un nombre de Rayleigh de 10i2. A cause dun grand pas de 
temps possible, la methode est particuliirement qualifiCt pour des probl&mes transitoires avec des 
prop&es changeant lentement. Une transformation q (x,8) cst proposee pour la determination assez 
precise des couches limites thermique et hydrodynamique p&s des parois verticales des cavitis. L’intCrZt de 
cette technique num&ique est illustri en r&solvant deux probl&mes de convection naturelle dans une cavite 
rectangulaire. avec des parois chauf&s ditT&nment mais uniformement et avec une seule paroi chautT6e non 

uniformement 

NUMERISCHE BERECHNUNG ZWEIDIMENSIONALER, ZEITABHANGIGER 
FREIER KONVEKTION IN HOHLRAUMEN NACH EINER 

FORTGESCHRITTENEN METHODE 

Zlrummeufuatmg - Eine zweidimensionale, zeitabhiingige numerische Rechenmethode wurde entwickelt, 
um die lam&tire freie Konvektion in geschlossenen Hohlriiumen und erzwungene Konvektion in Leitungska- 
niilen und offenen Hohlriiumen zu bestimmen. Die Transportgleichungen fti die Energie- und Wirbelfunk- 
tion werden mit Hilfe der ADI-Methode gel&, auf die Poisson-G&hung jedoch wird die erst vor kurzem 
entwickelte Methode der zykliihn Reduktion angewandt. Die resultierende implizite Methode bleibt bis 
zu einer Rayleigh-Zahl von lOi2 stabil. Infolge des zuliissigen grogen Zeitschritts ist die Methode besonders 
fiir instationiire Probleme mit extrem langsam veriinderlichen Werten geeignet. Eine Transformationsbezie- 
hung q(x.~) wird zur ausreichend genauen Bestimmung da therm&hen und hydrodynamischen Grenz- 
schichten vorgeschlagen. Der Nutzen der beschriebenen numerischen Rechentechnik wurde bei der Losung 
von zwei Problemen freier Konvektion in einem rechteckigen Hohlraum demonstriert, wobei einmal die 
Seitenwiinde unterschiedlich, aber gleichmii&g, beheizt waren und einmal nur eine Seitenwand ungleich- 

miiDig beheizt wurde. 
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YCOBEPWEHCTBOBAHHbItt WCJIEHHbIZi PAWi? ABYXMEPHOm 
HECTALUIOHAPHOR CBOBOaHOa KOHBEKUMM B ilOJlOCTIIX 

Amo~auma- PaspaBoran neyx~epiiblfi Hecraunonapnblii wcneHHbIfi ueron pacvka nahsmapnofi 

CSO6OAHOk KOHBCKUHH 6 3aKpbITblX IlOnOcTIlX H BbIHyYCAeHHOii KOHBeKLUiH B KiUMJlaX H OTKpblTbIX 

nonOCTRX. Y~~BHCHHK nepeHoca 3HeprHH H ~~BHX~~HHOCTH peuIanHcb npH6nHzueiiiibw pa3HocTnblM 
MeTOAOM, a ypaBHeHHC nyaCCOHa peWaJIOCb C IlOMOUIbiO pa3pa60TaHHOrO CpaBHHlWIbHO HeAaBHO 
MCTOAa UHKAHYCCKOii ~AyKlIHH. nOJIyWHHbIfi B pe3ynbTaTe HeRBHti MeTOA yCTOii'fHB0 pa60TaCT 

6nnoTb no 3Haqewfi wcna PeneR -10”. 6naroAapn BO~MO)KHOCTH HCnOnb3OBaHHR 6onbuIoro Wara 

II0 BpeMeHHMeTOA HaH6Onee3@C@KTHBeH Mn peWeHHI HCcTaI.lHOHapHNX 38AaY. B KOTOpblX CBOiiCTBa 

HSMeiiHRK)TcR Kpai-iHe MeAneHHO. npeAllOXieHa 3aBliCHMOCTb q(X,E) AA!4 AOCT?lTOYHO TOYHOrO OIlpeAe- 

neHm TennoBblx H rHnponmiabfwieclcHx norpatwwit4x cno& y BepTHKanbHslx 60~013b1~ CTCH nonocTeii. 
npeHMyluecTB0 npeano;mluroro sicnemioro MeTona pac&a npownmcrpnpokwio Ha npmtepe 

peWeHlifi AByX 3&pBY CBO60AHOk KOHBCKUHH B IIpnMOyrOAbH0i-i IlOnOCTH: C pz3BHOMepHO Ii~larMH 
A0 p3nHVHbIX TeMllepaTyp60KOBbIMHCTeHKaMH H C OAHOSi HepaBHOMepHO Hal-pC.TOfi CTCHKOfi. 


